Integrating Hydrogen into

Existing Clean Fuel Corridors

Cliff Gladstein Director,

Interstate Clean Transportation Corridor Natural Gas Vehicle Technology Forum Washington, D.C. – August 4, 2005

Summary

- Existing Clean Fuel Corridors present opportunities for H₂ development
- Challenges for H₂ development presented in clean fuel corridors
- ➤ Criteria for identifying potential projects to integrate H₂ into existing NGV deployments
- Propose Scope of work to coordinate H₂/NG efforts

NREL under sponsorship from the DOE Office of FreedomCAR and Vehicle Technologies

Background on ICTC

- Interstate Clean Transportation Corridor founded in 1996
- Steering Committee: U.S. DOE; U.S. EPA; CEC; ARB; SCAQMD; MDAQMD; AVAPCD; SANBAG; RCTC
- The most-successful planned clean fuel corridor development project in the nation
- ➤ Mission: Develop a public-private partnership to accelerate the commercialization of alternative fuels in goods movement by concentrating public resources on the deployment of new, clean-fuel heavy-duty tractors, the development of a network of refueling facilities to serve these vehicles, and the linkage of these facilities to existing fleets of AFVs to ensure the economic sustainability of the system.

Elements of Successful Clean Fuel Corridors

- ► Clean Fuel Corridors (CFCs) are for HDVs
 - ✓ LD AFVs limited range, fleet oriented deployment restrict to intra-city travel
 - ✓ HDVs designed to travel between cities, states
 - √ HDVs consume prodigious volumes of fuel
- LNG dominant (but not only) fuel ICTC
 - ✓ Provide range needed in AFV HDVs
 - ✓ Minimize weight penalty
 - ✓ Infrastructure more flexible

Elements of Successful Clean Fuel Corridors (cont.)

- Corridor developed incrementally through simultaneous infrastructure development with AFV fleet deployment
 - √ Strategically located existing fleets
 - ✓ Enough vehicles to economically support station
 - ✓ Need sufficient fuel throughput to justify fueling infrastructure
- Public-Private Partnerships
- Concentrate Public, Private resources on High probability projects

Benefits of Blending H₂ with Natural Gas

- SunLine Transit experience:
 - 50% reduction in NOx emissions
 - 7% reduction in CO₂
 - Slight improvements in power, torque
- When H₂ replaces CH₄, range is reduced (80/20 mix by vol. = 15% ↓); In proposed LNG configuration, however, H₂ component will increase range
- Increased load for stations; valuable experience; opportunity for suppliers, vendors to reduce costs

Challenges to H_2 in Clean Fuel Corridors

- CNG Buses and Trucks
 - Reduction in range
- > LNG Trucks
 - Requires integration of another fuel into the system
 - Need for on-board blending
- Complexity (2 and 3 fuels?!)
- Adding H₂ Storage increases Weight (cylinders)
- **Costs**
 - Hydrogen
 - Vehicle conversion,
 - On-site hydrogen production

Opportunities for H₂ in Clean Fuel Corridors

- Centralized fleets
 - Centralized fueling
 - Return-to-base
 - Central management and control
- Prodigious fuel consumption
- Public Accessibility Stations serve a larger vehicle population (opportunity for growth)
- Existing natural gas infrastructure
- Operator familiar w/alternative fuels
- ► LNG reduces gas quality issues (H₂ production)

Proposed ICTC Sites for H₂ Integration

- USA Waste, City of Fresno
 - LNG refuse collection trucks
 - Mack E7G engines
- City of Barstow
 - CNG transit buses
 - Goshen 25 ft buses w/Cummins 5.9L B Gas Plus
- City of Tulare
 - CNG integration
- Harris Ranch, City of Coalinga
 - LNG over-the-road trucks
 - Dual-fuel engines

Advantages of Approach

- Link to existing AF corridor CNG, LNG as bridge to Hydrogen Future
- ▶ Bridge gaps in emerging H₂ infrastructure
- ▶ Create Clean Fuel Clusters LNG and Hythane for HDVs, LCNG & H₂ for LDVs
- Work with fleets with AFV experience
- Utilize existing NG vehicles as consumers of H₂
- Collaborate with existing H₂ development efforts

Link to Existing

Corridor

- ➤ No need to "reinvent the wheel"; successful mechanism already in place
- Natural gas infrastructure exists in strategic locations through LNG
- Fleets (both public & private) with AFV & AF infrastructure experience
- Capable public-private partnership with experienced management
- ➤ Established, effective and well coordinated working relationships btw public agencies, private sector

Current and Proposed H₂ Stations and Proposed ICTC 片2 Stations

Work with Fleets with AFV Experience

- Know the difficulties of trying new technology; know what to expect
- Understand bureaucracy, application processes, reimbursement, reporting, etc., that comes with participation in AFV projects using grant funding
- More likely to appreciate the nonmonetary benefits
- > Have existing relationships

Discussion

OF THE ICTC

- ▶ Identify and Secure Participation of Early Adopters
- Concentric Circles Build the Corridor by focusing on the development of H₂ nodes/clusters/villages
- Coordinate goals of many public agencies and private interests
- Leveraging funding from multiple sources to "stretch" funding for the project
- ➤ Integrate H₂ into ICTC by promoting a technology mix (because of status of the technology
- Primary difference: Much more focused on technology demonstration than ICTC

Next Steps

- ► Identify and Define Needed New Technology
- ► Identification, Allocation of Resources
- Secure Commitments from Participants
- Secure and Provide Specifications for Sites
- Ascertain 3rd Party Use for Proposed Sites